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Abstract: It has been difficult in satellite remote sensing to derive accurate water optical, 

biological, and biogeochemical products over high-altitude inland waters due to issues in 

13 

14 

satellite data processing (i.e., atmospheric correction). In this study, we demonstrate that 

accurate normalized water-leaving radiance spectra nLw(λ) can be derived for a high-altitude 

15 

16 

lake, Lake Tahoe, using improved Rayleigh radiance computations (Wang, M., Opt. Express, 

24, 12414–12429, 2016) which accurately account for water surface altitude effects in the 

17 

18 

Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system. Satellite 

observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 

19 

20 

National Polar-orbiting Partnership (SNPP) between 2012 and 2018 are used to evaluate and 

validate satellite-derived nLw(λ) spectra, and to quantitatively characterize water properties in 

21 

22 

the lake. Results show that VIIRS-derived nLw(λ) spectra are quite comparable with those from 

the in situ measurements. Subsequent retrievals of water biological and biogeochemical 

23 

24 

products show that chlorophyll-a (Chl-a) concentration and Secchi depth (SD) are reasonably 

well-estimated, and captured normal seasonal variations in the lake, e.g., the annual highest 

25 

26 
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Chl-a and SD normally occur in the winter while the lowest occur in the summer, which is 

consistent with in situ measurements. Interannual variability of these water quality parameters 

27 

28 

is also observed. In particular, Lake Tahoe experienced a significant environmental anomaly 

associated with an extreme weather condition event in 2017, showing considerably decreased 

29 

30 

nLw(λ) at the spectral bands of 410, 443, and 486 nm, and significantly reduced SD values in the 

entire lake. The low SD measurements from VIIRS are consistent with in situ observations. 

31 

32 

Following the event in the 2017–2018 winter, Lake Tahoe recovered and returned to its typical 

conditions in spring 2018.  

33 

34 

Keywords: High-altitude lakes; Lake Tahoe; VIIRS; satellite ocean color; normalized water-

leaving radiance nLw(λ); water optical properties. 
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1. Introduction 

Located at an altitude of 1897 m between California and Nevada in the U.S., Lake Tahoe 

(Fig. 1) is a large fresh water lake and is renowned for its water clarity. It is the second deepest 

37 

38 

39 

lake (after Crater Lake in southern Oregon) in the U.S. with a length of 35 km, width of 19 km, 

average depth of 333 m, surface area of about 490 km2, and total volume of approximately 156 

40 

41 

km3. There are 63 tributaries that provide half of the water supply to Lake Tahoe, which has a 

drainage area of about the same size as the lake. The evaporation in the region accounts for about 

42 

43 

two thirds of the total water mass leaving the lake, and the other one third is through the lake’s 

only outlet, the Truckee River. 

44 

45 

In the Lake Tahoe region, the climate is characterized by warm dry summers and chilly 

winters with an average daily maximum temperature of ~25.5°C in July and an average daily 

46 

47 

minimum temperature of ~4.6°C in December. The lake serves as an important resource for the 

regional economy by attracting tourists from all over the world throughout the year with its 

48 

49 

winter sports, summer recreations, and other activities and events. Thus, the conservation of lake 

water quality and the surrounding environment has drawn major political, scientific, and public 

interest in the region. 

50 

51 

52 



 

 

Lake Tahoe has a long history of water clarity monitoring using Secchi depth (SD) 

measurements back to the 1960s (Goldman, 2000; Jassby et al., 1999). In the last five decades, 

53 

54 

according to the 2018 Tahoe Environmental Research Center report (TERC, 2018), the water 

clarity in terms of the SD declined consistently from ~30 m in the mid 1960s to ~20 m in recent 

55 

56 

years (TERC, 2018). The SD decline can be attributed to increased phytoplankton concentration 

and the amount of fine sediment particles in the lake (Jassby et al., 1999; Jassby et al., 2003). 

57 

58 

Seasonally, one of the SD minimums occurs in June due to increased suspended sediment 

discharges with the melting of snowpack, and another SD minimum occurs in December 

59 

60 

primarily as a result of mixed-layer deepening (Jassby et al., 1999). The long-term SD model 

also shows that the interannual variability of SD in the lake can be driven by weather changes 

61 

62 

such as precipitation anomalies in the region (Jassby et al., 2003). 

In addition, Lake Tahoe shows a long-term warming trend due to the upward trend of air 

63 

64 

temperature and incoming longwave radiation in the region (Coats et al., 2006). Indeed, the 

volume-weighted mean temperature increased about 0.015 ºC/year between 1970 and 2002. The 

65 

66 

thermal structure of the lake also shows changes, e.g., the decreasing depth of the thermocline 

and the increase of resistance of the water in the lake to vertical layer mixing and stratification 

67 

68 

(Coats et al., 2006; Sahoo et al., 2016). In Lake Tahoe, both upwelling and surface circulation 

are observed and characterized with satellite remote sensing from the Advanced Spaceborne 

69 

70 

Thermal Emission and Reflection Radiometer (ASTER) (Hook et al., 2007; Tonooka and 

Palluconi, 2005; Tonooka et al., 2005), the Landsat Enhanced Thematic Mapper (ETM) (Barsi et 

71 

72 

al., 2007; Hook et al., 2004), and the Moderate Resolution Imaging Spectroradiometer (MODIS) 

(Hook et al., 2007). The upwelling of the intermediate-depth water was observed to occur 

73 

74 

frequently in the spring and summer seasons. It brings the water from the  depth of ~10 to ~30 m 

to the surface, and leads to enhanced phytoplankton growth and decreased water clarity in Lake 

75 

76 

Tahoe (Steissberg et al., 2005). 

As one of the main drivers of the water clarity trend in Lake Tahoe, the rate of 

77 

78 

phytoplankton growth has been steadily increasing over the past 50 years. Indeed, primary 79 



productivity increased from < ~50 g C m-2 year-1 in 1959 to > ~200 C m-2 year-1 in recent years 80 

81 

82 

(TERC, 2018). In addition, the aerosol deposition provides most of the nutrients in the dissolved 

inorganic particles and total nitrogen, as well as a significant amount of the total phosphorus 

loading in Lake Tahoe (Jassby et al., 1994). In fact, the annual nitrogen (N), phosphorous (P), 83 

84 

3, and 755 metric tons (Dolislager et al., 2012), respectively. Indeed, these nutrients from the 85 

aerosol deposition contributed to the long-term increase of Chl-a concentration, water primary 86 

productivity, and biomass in Lake Tahoe (Mackey et al., 2013). Specifically, it has been found 87 

that the phytoplankton amount in Lake Tahoe is becoming phosphorus-limited from the nitrogen-88 

limited because the deposited aerosols in the lake contain nutrients with high N:P ratios (Chang 89 

et al., 1992; Mackey et al., 2013). However, it is noted that, in addition to the phosphorous 90 

limitation, phytoplankton growth in Lake Tahoe is also iron-limited (Chang et al., 1992). 91 

In situ water optics measurements have long been conducted to characterize and quantify 92 

optical and bio-optical properties in Lake Tahoe. The spectral irradiance and beam transmittance 93 

were measured as a function of water depth in the lake (Smith et al., 1973). A blue color index 94 

was also developed using the remote sensing reflectance Rrs(λ) measurements to quantitatively 95 

analyze the spatial and seasonal variations (Watanabe et al., 2016). It is noted that the remote 96 

sensing reflectance Rrs(λ) (as a function of the wavelength λ) is defined as Rrs(λ) = nLw(λ)/F0(λ), 97 

where nLw(λ) and F0(λ) are the normalized water-leaving radiance (Gordon, 2005; Morel and 98 

Gentili, 1996; Wang, 2006) and the mean extraterrestrial solar irradiance (Thuillier et al., 2003), 99 

respectively. As an oligotrophic subalpine lake, the role of ultraviolet (UV) radiation, and the 100 

patterns of spatial and temporal variability of UV transparency were investigated (Rose et al., 101 

2009). It was found that UV transparency differs from the photosynthetically available radiation 102 

(PAR). In fact, the combination of the UV and visible water transparency can provide a more 103 

comprehensive understanding of the ecosystem changes and the biological and biogeochemical 104 

processes in Lake Tahoe (Rose et al., 2009). 105 

and particular matter (PM) from the aerosol deposition in the lake are estimated to be about 185, 



 

 

Satellite observations over global inland waters can provide an effective tool to monitor the 106 

lake environmental changes such as algae bloom and water clarity. Using the shortwave infrared 107 

(SWIR)-based atmospheric correction algorithm (Wang, 2007; Wang and Shi, 2005, 2007; Wang 108 

et al., 2009b), it has been demonstrated that MODIS-derived water optical property data, e.g., 109 

nLw(λ) spectra, can be used to monitor and assess water property (quality) in turbid Lake Taihu 110 

in China (Wang et al., 2011). The spatial and temporal water turbidity variations in Lake 111 

Okeechobee are also characterized using MODIS measurements (Wang et al., 2012a). 112 

Furthermore, the cyanobacteria blooms in Lake Taihu are quantitatively assessed and evaluated 113 

from MODIS observations (Hu et al., 2010). In addition to water optical parameters such as 114 

nLw(λ) spectra, lake surface temperature and many other water quality parameters, such as the 115 

water diffuse attenuation coefficient at 490 nm Kd(490) (Lee et al., 2005; Wang et al., 2009a), 116 

Chl-a concentrations (Hu et al., 2012; O'Reilly et al., 1998; O'Reilly and Werdell, 2019; Wang 117 

and Son, 2016), total suspended matter (TSM) (or suspended particulate matter (SPM)) 118 

concentrations (Knaeps et al., 2015; Nechad et al., 2010; Shi et al., 2018; Yu et al., 2019), SD 119 

(Binding et al., 2015; Lee et al., 2016), float algae index (Hu, 2009), and inherent optical 120 

properties (IOPs) (Lee et al., 2002; Shi et al., 2019; Werdell et al., 2013), can also be routinely 121 

and reliably derived from satellite remote sensing observations. These satellite water quality 122 

property data can be further used to study global lakes to characterize and quantify the long-term 123 

water physical, optical, biological, and biogeochemical variability (Bolgrien and Brooks, 1992; 124 

Shi and Wang, 2015; Shi et al., 2018; Son and Wang, 2019). In all of these studies, however, 125 

satellite reflective solar radiance data (water color) are applied only to global sea-level inland 126 

waters.     127 

Lake Tahoe has long been used as one of the sites for validation of the absolute radiometric 128 

calibration and surface geophysical products derived from various satellite sensors (mostly for 129 

thermal bands and their corresponding applications) such as ASTER, MODIS, Landsat 5 and 130 

ETM+ (Barsi et al., 2007; Hook et al., 2007; Steissberg et al., 2005; Tonooka and Palluconi, 131 

2005; Tonooka et al., 2005), as well as for the sensor preflight and inflight calibration (Parada et 132 



al., 1997; Thome et al., 1998). However, few satellite reflective solar radiance observations have 133 

ever been used to characterize and quantify the lake ecosystem, and monitor water optical, 134 

biological, and biogeochemical changes. This is mainly due to issues in the satellite data 135 

processing, i.e., atmospheric correction (Gordon and Wang, 1994; IOCCG, 2010; Wang, 2007), 136 

to accurately account for the effect of lake surface altitude (Wang, 2016). Specifically, the top-137 

of-atmosphere (TOA) Rayleigh scattering radiance computations were incorrect for high-altitude 138 

lakes (Wang, 2016), leading to over-subtraction of the TOA Rayleigh-scattering radiance 139 

contributions, and thereby deriving biased low nLw(λ) spectra (often negative values depending 140 

on the lake surface altitude) (Gordon and Wang, 1994; Wang, 2016). Consequently, satellite-141 

derived optical, biological, and biogeochemical products (e.g., Chl-a, Kd(490), SD, IOPs, or any 142 

other products that use the inputs of satellite-measured nLw(λ) spectra) for global high-altitude 143 

lakes were in error, and generally cannot be used. This includes satellite-derived water quality 144 

products over global high-altitude lakes from the Sea-viewing Wide-field-view Sensor 145 

(SeaWiFS), MODIS, and the Visible Infrared Imaging Radiometer Suite (VIIRS), etc. It is noted 146 

that for global ocean color data processing the required ancillary data such as sea-level 147 

atmospheric pressure, total column ozone amount, sea surface wind speed, and total column 148 

water-vapor amount are routinely obtained from the National Center for Environmental 149 

Prediction (NCEP) (Ramachandran and Wang, 2011). 150 

Following a recent effort for improving the TOA Rayleigh radiance computations for 151 

satellite ocean/water color remote sensing, in particular, for accounting for the water surface 152 

altitude effect (Wang, 2016), the global VIIRS observations on both the Suomi National Polar-153 

orbiting Partnership (SNPP) and NOAA-20 satellites are processed using the improved Rayleigh 154 

radiance computations in the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data 155 

processing system (Wang et al., 2013). In this study, we use Lake Tahoe as an example to 156 

demonstrate that high quality nLw(λ) spectra can now be derived from VIIRS measurements for 157 

global high-altitude lakes to characterize and quantify the lake ecosystem as well as monitor 158 

environmental changes. Specifically, VIIRS-SNPP-derived nLw(λ) spectra are compared with 159 



 

 

those from the in situ measurements and shown to have good results. Furthermore, based on the 160 

in situ SD measurements in the lake, a regional empirical SD algorithm has been developed 161 

using the VIIRS-derived nLw(λ) at the wavelength of 551 nm. Therefore, the seasonal and 162 

interannual variabilities of nLw(λ), Chl-a, and SD in Lake Tahoe are characterized and quantified. 163 

In particular, we show that when using VIIRS-derived water property data the anomalous water 164 

property in Lake Tahoe during the 2017–2018 abnormal event can be quantitatively investigated 165 

and analyzed. Finally, the potential to use Lake Tahoe as an ocean color validation site for 166 

evaluation and validation of satellite ocean color products, as well as routine sensor performance 167 

monitoring (Wang et al., 2015), is discussed.  168 

2. Satellite-derived and in situ-measured water properties in Lake Tahoe 169 

2.1. VIIRS-measured nLw(λ) spectra and other water color products 170 

Successfully launched in October 2011, VIIRS-SNPP provides continuous observations of 171 

the Earth’s atmosphere, land, cryosphere, and ocean properties with the 14 reflective solar bands 172 

(RSBs) covering a spectral range of 410–2257 nm (Goldberg et al., 2013). For the satellite ocean 173 

and inland water color remote sensing, the VIIRS-SNPP five visible bands (M1–M5) at the 174 

nominal central wavelengths of 410, 443, 486, 551, and 671 nm, two imaging (I) bands (I1 and 175 

I2) at 638 and 862 nm, two near-infrared (NIR) bands (M6 and M7) at 745 and 862 nm, and 176 

three SWIR bands (M8, M10, and M11) at 1238, 1601, and 2257 nm are used to derive VIIRS 177 

nLw(λ) spectra over the global ocean and coastal/inland waters (Wang and Jiang, 2018b; Wang et 178 

al., 2013). It is noted that VIIRS measurements have spatial resolutions of 750 m and 375 m for 179 

the M-bands and I-bands, respectively. Thus, VIIRS-derived nLw(λ) spectra at the spatial 180 

resolution of 750 m are applicable for global open oceans (Wang et al., 2016a), while nLw(λ) at 181 

the image bands (e.g., nLw(638) data) with the spatial resolution of 375 m are useful for various 182 

coastal and inland water applications (Wang and Jiang, 2018b). 183 

VIIRS global ocean and inland water color products have been routinely generated since 184 

2012 using MSL12, which was originally developed for producing consistent global ocean color 185 



 

 

data sets from multiple satellite sensors using a common data processing software (Wang, 1999; 186 

Wang et al., 2002). It should be noted that for deriving accurate global ocean color products the 187 

on-orbit vicarious calibration has been carried out for VIIRS using the in situ MOBY 188 

measurements (Clark et al., 1997) in the waters off Hawaii (Wang et al., 2016b). During the 189 

VIIRS period, MSL12 has been significantly modified and improved, including an atmospheric 190 

correction algorithm (Jiang and Wang, 2014; Wang and Jiang, 2018a; Wang et al., 2012b), cloud 191 

masking using the SWIR bands (Wang and Shi, 2006), straylight and cloud shadowing detection 192 

(including the adjacency effect)  (Bulgarelli et al., 2017; Hu et al., 2020; Jiang and Wang, 2013), 193 

as well as improved satellite algorithms for various ocean/water color products, e.g., Chl-a 194 

(Wang and Son, 2016), Kd(490) (Wang et al., 2009a), IOPs (Shi and Wang, 2019), data quality 195 

assurance (QA) (Wei et al., 2016), etc. In particular, improved TOA Rayleigh radiance 196 

computations for accurately accounting for the effects of high-altitude inland waters have been 197 

developed and implemented in MSL12 (Wang, 2016). It should be noted that in the MSL12 198 

ocean/water color data processing the atmospheric diffuse transmittance (IOCCG, 2010; Yang 199 

and Gordon, 1997) has also been modified to account for the high-altitude lake surface 200 

atmospheric pressure changes (i.e., accounting for the Rayleigh optical thickness variations) for 201 

both the solar and viewing directions. This is also an important fact impacted directly by the 202 

Rayleigh optical thickness variation due to significant atmospheric pressure changes over high-203 

altitude lakes (IOCCG, 2010). However, it is assumed that there is negligible change in the 204 

Rayleigh-aerosol interaction radiance term (Gordon and Wang, 1994; IOCCG, 2010; Wang, 205 

2007) in the VIIRS data processing for a high-altitude lake. It should also be noted that VIIRS-206 

derived ocean color products have been well evaluated and validated over various ocean regions 207 

and some sea-level inland waters through presentations in various conferences, meetings, and 208 

workshops, as well as publications (Barnes et al., 2019; Hlaing et al., 2013; Mikelsons et al., 209 

2020; Wang et al., 2016a). However, VIIRS-derived inland water quality products have not been 210 

evaluated over any high-altitude lakes such as Lake Tahoe.  211 



One of the important issues for deriving accurate water property data over high-altitude 

inland waters from remote sensing is to accurately account for the water surface altitude effect in 

212 

213 

214 

215 

satellite ocean color data processing, which assumed the sea-level water surface property (i.e., 

atmospheric pressure measured and used at the sea-level) (Gordon et al., 1988a; Wang, 2002, 

216 

217 

2005). For high-altitude lakes such as Lake Tahoe, this leads to an over-estimation of the TOA 

spectral Rayleigh radiance contributions (therefore, over subtractions of Rayleigh radiance 

218 

219 

values in atmospheric correction), thereby deriving biased low nLw(λ) spectra (or even negative 

values) (Gordon and Wang, 1994; IOCCG, 2010; Wang, 2007). For example, the ratio of the 

220 

221 

surface atmospheric pressure at 2 km altitude to that at sea-level is about 0.78, i.e., the TOA 

Rayleigh-scattering radiance values over a 2 km altitude lake have an approximately similar 

222 

223 

factor smaller than those over the sea-level lakes (Wang, 2016).    

In fact, for high-altitude inland waters, the accurate calculation of the TOA spectral 

224 

225 

Rayleigh scattering radiances is really important (particularly for the short visible bands) because 

the TOA radiances contributed from aerosols are usually less important because aerosols are 

226 

227 

mostly located close to sea-level (e.g., within ~2 km). With the improved TOA Rayleigh 228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

the TOA Rayleigh radiance computations (Wang, 2016), in addition to various other challenges 

related to the data processing over global sea-level waters. This problem existed in previous 

radiance computation in MSL12 (Wang, 2016), the effects of high-altitude lakes (i.e., 

significantly low atmospheric pressure, and therefore, reduced spectral Rayleigh optical 

thicknesses) are accurately accounted for. Therefore, water property data can be derived 

accurately over global high-altitude waters including Lake Tahoe. 

2.2. In situ-measured nLw(λ) spectra 

As NASA’s calibration site, four permanent moored buoys located at different locations in 

Lake Tahoe routinely make in situ measurements such as longwave and shortwave radiations, 

wind speed and direction, atmospheric pressure, aerosol optical depth (AOD), and water skin 

temperature (https://laketahoe.jpl.nasa.gov/measurements). Specifically, the moored buoy at the 

TB3 station as noted in Fig. 1 is located at [39°06'37"N, 120°04'31"W]. Hyperspectral radiance 



measurements in the wavelength range of 360 nm to 875 nm were taken with the hyperspectral 

radiometers installed at above water surface (0+ m), 2 m, and 9 m depths on the TB3 buoy. Each 

radiometer measured the downward spectral irradiance Ed(λ, z) and upward spectral radiance 

Lu(λ, z) as a function of water depth z. Measurements were made hourly from local time 6:00 to 

19:00. The water attenuation coefficient for Lu(λ, z) was then calculated, and consequently, Lu(λ, 

+ −0 ) (calculated from Lu(λ, 0 )) was estimated. Finally, the remote sensing reflectance spectra

+Rrs(λ) were calculated with Lu(λ, 0 ) and Ed(λ, 0+) (Watanabe et al., 2016).

During 2013, in situ in-water radiometric profile data were also taken at the TB3 station and 

mid-lake stations with another vertical profiling hyperspectral radiometer system within two 

hours of the local solar noon on March 1, April 28, July 25, September 9, October 25, and 

December 16. Remote sensing reflectance spectra Rrs(λ) were then calculated from the 

−measurements of the subsurface upward spectral radiance Lu(λ, 0 ) and the downward spectral

irradiance E +
d(λ, 0 ) (Watanabe et al., 2016). 

A total of 14 in situ Rrs(λ) spectra measurements as described above at the station TB3 in the 

lake were shown in Watanabe et al. (2016). Specifically, these in situ Rrs(λ) spectra covered a 

time period from December 16, 2013, to April 15, 2015. In this study, these 14 in situ Rrs(λ) 

spectra acquired at the TB3 station in Lake Tahoe (Fig. 1) were converted to in situ nLw(λ) 

spectra to further compare, evaluate, and validate VIIRS-derived nLw(λ) spectra. 

In addition to the in situ radiometric measurements at the TB3 station, continuous water 

quality monitoring has been routinely conducted since 1968. The SD and Chl-a (at the depths of 

0, 10, 50, 100 m) have been sampled routinely approximately every 34 days at the Mid-Lake 

Tahoe Productivity (MLTP) station located at [39°8'30"N, 120°00'55.5"W] (noted in Fig. 1). The 

in situ SD measurements and coincident VIIRS-derived nLw(λ) at the green band (551 nm) can 

be used to develop an empirical algorithm to derive SD (Binding et al., 2008). The temporal 

variations of VIIRS-derived Chl-a and SD data at the MLTP station are compared with those 

from the in situ measurements to evaluate satellite algorithms performance for these two 

important water property products.    
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3. Results

3.1. VIIRS-derived nLw(λ) spectra compared with those from in situ measurements 

There are 10 (out of 14) radiance matchups for VIIRS-SNPP-derived and in situ-measured 

nLw(λ) spectra at the TB3 station on the same date in Lake Tahoe. To compare the VIIRS-SNPP-

derived and in situ-measured nLw(λ), a box of 7 × 7 pixels (pixel at about 750 m spatial 

resolution) centered at the TB3 station in the remapped nLw(λ) image was set, and the median of 

nLw(λ) values in the box was calculated as the VIIRS-derived nLw(λ) value in order to compare 

with the in situ nLw(λ) spectra. There were four cases with the cloud cover when VIIRS-SNPP 

passed over the TB3 station, preventing the production of valid VIIRS nLw(λ) spectra. Fig. 2 

provides examples of comparative results between VIIRS-derived and in situ-measured nLw(λ) 

spectra at the TB3 station on June 15, 2013 (Fig. 2a), July 15, 2013 (Fig. 2b), August 15, 2013 

(Fig. 2c), and September 15, 2013 (Fig. 2d). The comparisons in Fig. 2 show that VIIRS-derived 

nLw(λ) spectra match quite well with those from the in situ measurements, and the two data sets 

are generally consistent (Fig. 2). However, there are some minor differences in the matchups in 

nLw(λ) as VIIRS-derived nLw(410) and nLw(443) are slightly biased low on June 15, 2013, 

relative to those from the in situ measurements. Overall, results in Fig. 2 demonstrate that 

VIIRS-derived nLw(λ) spectra using the improved new Rayleigh radiance computation in MSL12 

are generally accurate, showing significant improvements compared to those with incorrect 

Rayleigh radiance computations for global high-altitude lakes (i.e., significantly biased low 

nLw(λ) values, and even negative at the blue bands). 

The overall accuracy of VIIRS-derived nLw(λ) spectra at the TB3 station is further evaluated 

(Fig. 3). Since Lake Tahoe has high water clarity, values of nLw(638) and nLw(671) are generally 

very small (close to zero). Differences in matchups for nLw(638) and nLw(671) are significantly 

amplified in the logarithmic scale as shown in Fig. 3, although the differences are actually trivial. 

For nLw(λ) at the blue and green bands (wavelengths at 410, 443, 486, and 551 nm), VIIRS-

derived nLw(λ) data agree quite well with the in situ measurements, with the mean nLw(λ) ratio 
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value between VIIRS-derived and in situ-measured nLw(λ) of 0.999 and the coefficient of 292 



determination R2 between the two data sets (in linear scale) of 0.857. Specifically, the mean 

nLw(λ) ratio values between VIIRS-derived and in situ-measured nLw(λ) at the VIIRS 

wavelengths of 410, 443, 486, 551, 638, and 671 nm are 1.019, 0.936, 1.076, 0.967, 1.297, and 

1.286, respectively, while the mean nLw(λ) absolute difference values between the two for the 

corresponding six VIIRS bands are 0.124, 0.109, 0.078, 0.037, 0.023, and 0.024 mW cm–2
 μm–1 

sr–1, respectively. It should be noted again that, for small values such as nLw(λ) at the VIIRS red 

bands (638 and 671 nm), the mean absolute difference is a better and more meaningful measure 

for describing the uncertainty. In fact, it shows the smallest mean absolute difference values for 

nLw(λ) at the red bands although the nLw(λ) ratios at these bands are the largest due to very small 

values. Results in Figs. 2 and 3 confirm that high-quality nLw(λ) spectra can be derived from 

VIIRS-SNPP observations over Lake Tahoe. Therefore, the lake water optical, biological, and 

biogeochemical property data (e.g., Chl-a and SD) can be derived from VIIRS-SNPP-measured 

nLw(λ) spectra, and these data can be used to study the lake water property dynamics, 

characterize and quantify the long-term ecosystem variability, monitor environmental change, 

and detect hazardous events over the global high-altitude lakes. These possibilities and potentials 

are evaluated and discussed below. 

3.2. VIIRS-derived SD and Chl-a compared with the in situ data 

In Lake Tahoe, the SD variations are correlated to the amount of fine sediment in the water 

column (Jassby et al., 1999; Jassby et al., 2003). Loading and settling rates of such fine inorganic 

particles (< ~16 μm in diameter) were found to have the largest impact on the lake clarity (Sahoo 

et al., 2010). Considering the fact that nLw(λ) at the red end of the spectrum (638 and 671 nm) are 

usually close to zero for the lake, nLw(551) can be a sensitive indicator for the inorganic particle 

concentrations and correlate with water clarity. Indeed, Binding et al. (2015) showed that the SD 

in the Great Lakes can be well correlated to satellite-derived nLw(551) values. At the MLTP 

station in Lake Tahoe (Fig. 1), there are total of 57 valid VIIRS nLw(λ) retrievals coincident with 

the in situ SD measurements in the period between 2012 and 2018. Using these 57 sets of data, 

an empirical SD model for the lake can then be developed and described as following: 
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�� = 10(�� 
 ��×
��(�����,  (1) 320 

where coefficients a0 = 1.484 and a1 = 0.551 mW–1 cm2 μm sr, which were derived from the −321 

best fit to the in situ SD data to VIIRS-derived nLw(551). Fig. 4 shows a comparison between the 

VIIRS-derived (using Eq. (1)) and in situ-measured SD at the MLTP station. The mean and 

median ratios of the VIIRS-derived SD and in situ values are 1.0649 and 1.0365 with the 

standard deviation (STD) of 0.1969. The comparison results (Fig. 4) show that VIIRS-derived 

SD data are quite reasonable and can be used to estimate water clarity in the lake from satellite 

observations. 

Fig. 5 further provides the performance evaluation of VIIRS-derived Chl-a (Fig. 5a) and SD 

(Fig. 5b) with the corresponding in situ measurements at the MLTP station during the period of 

2012–2018. VIIRS-derived Chl-a data show the same seasonal trend as that from the in situ Chl-

a measurements, i.e., high Chl-a in the winter and low Chl-a in the summer. It should be noted 

that in situ Chl-a data were derived as mean values from measured Chl-a data at the surface and 

at 10 m water depth, considering SD values are normally between 20 and 30 m (therefore, 

excluding in situ Chl-a data at 50 and 100 m). Results show that VIIRS-derived low Chl-a values 

in the MLTP station are ~0.2 mg m–3 and consistent with those from in situ data. However, some 

discrepancies between VIIRS-derived and in situ-measured Chl-a can be found for high Chl-a 

values in the winter season. For example, VIIRS-derived Chl-a had the same peaks as the in situ 

measurements in the winters of 2012–2013, 2013–2014, and 2017–2018. VIIRS-derived Chl-a 

was particularly different from the in situ data in the winter of 2016–2017 (Fig. 5a). 

VIIRS-derived SD data in the MLTP station show the same seasonal and interannual 

variations as those from the in situ SD measurements (Fig. 5b). In the period between 2012 and 

2016, VIIRS-derived SD data were consistent with the in situ measurements in terms of both the 

magnitude and seasonal variation. However, relatively large SD discrepancies between them 

were found with anomalously low in situ SD measurements in mid-2016 and late 2017, although 

the SD seasonal variation from the two SD data sets was still the same.  
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Although there are some disagreements in the magnitude for VIIRS and in situ measured SD 

(Figs. 4 and 5b) and Chl-a (Fig. 5a), results are generally consistent in terms of magnitude values 

and particularly in their variations. It should be noted that the in situ SD and Chl-a measurements 

also have their own uncertainties due to the instrument limitations and the operation differences, 

e.g., human factors for the SD estimation. These uncertainties also contribute to the differences

between VIIRS and in situ measured Chl-a and SD data. Therefore, we can conclude that VIIRS-

derived Chl-a and SD data have reasonably good accuracy, and these data products along with 
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VIIRS-derived nLw(λ) spectra can be used to study water properties in Lake Tahoe. 

3.3. VIIRS-measured climatology of nLw(λ), Chl-a, and SD  

Noticeably, there are some significant differences in VIIRS-derived water property data in 

2017 and early 2018, compared with those in the other years. Indeed, an anomalous event 

happened in the period of 2017 to early 2018 in the region, and significantly impacted water 

properties in Lake Tahoe (Staff-Report, 2018). Therefore, for the calculations of climatology 

water properties in the lake, VIIRS measurements from 2012–2016 (excluding years 2017 and 

2018) are used. 

Fig. 6 provides the climatology images of nLw(410) (Fig. 6a), nLw(443) (Fig. 6b), nLw(486) 

(Fig. 6c), nLw(551) (Fig. 6d), nLw(638) (Fig. 6e), nLw(671) (Fig. 6f), Chl-a (Fig. 6g), and SD 

(Fig. 6h), which were calculated as the median of all valid retrievals from VIIRS-SNPP 

measurements between 2012 and 2016, providing the normal water optical, biological, and 

biogeochemical conditions of the lake. Results from VIIRS observations show that Lake Tahoe 

features include spatial uniformity in water properties and enhanced nLw(λ) at the blue bands, 

except for small areas in the southern and northwestern parts of the lake where water depth is 

less than ~20 m. Fig. 6 shows that spatial distributions of Chl-a, SD, and nLw(λ) in the lake are 

quite uniform and there is little spatial difference with normal Chl-a ~0.25 mg m–3 and SD ~22 m 

for the entire lake. The changes of nLw(λ) spectra are also small across the lake for nLw(λ) at the 

all VIIRS bands. In fact, there is no specific spatial pattern for all climatology nLw(λ) spectra in 

the lake. Spectrally, VIIRS-derived nLw(λ) spectra show the typical feature of clear blue waters 
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(Gordon et al., 1988b; Morel and Maritorena, 2001), showing nL (443) (Fig. 6b) ~0.8 mW cm–2
w  

μm–1 sr–1, while nLw(410) (Fig. 6a) and nLw(486) (Fig. 6c) are a little bit less than nLw(443). In 

comparison, the climatology nLw(551) (Fig. 6d) in the lake is ~0.3 mW cm–2
 μm–1 sr–1. Both 

nLw(638) (Fig. 6e) and nLw(671) (Fig. 6f) are less than ~0.05 mW cm–2
 μm–1 sr–1.  

A transect line from the north to south across the lake is defined to further characterize the 

uniformity of the lake spatial distributions in nLw(λ) spectra, Chl-a, and SD (Fig. 6a). Fig. 7 

provides quantitative results of nLw(λ) spectra, Chl-a, and SD as a function of distance from the 

north to south along the transect line noted in Fig. 6a. Fig. 7a shows that climatology nLw(443) is 
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generally stable at ~0.8 mW cm–2 μm–1 sr–1 from the north of the transect line to 20 km in the 381 

lake, and it trends a little lower to ~0.6 mW cm–2 μm–1 sr–1 from 20 km to 30 km. However, 382 

climatology nLw(551) value (~0.3 mW cm–2 μm–1 sr–1) is quite stable and does not show any 383 

noticeable change along the transect line (Fig. 7a). In the southern end of the transect line, the 

water type changes from a typical clear blue water to a typical shallow (bottom-affected) water 

with significantly enhanced nLw(λ) in the visible bands (Fig. 7a). 

The variations of climatology Chl-a and SD along the transect line are shown in Fig. 7b. 

Chl-a shows little variation with a value of ~0.25 mg m–3 for the majority of the lake even though 

it increases slightly to ~0.3 mg m–3 in the northern end region and spikes to over ~1.0 mg m–3 in 

the southern end region (Figs. 6g and 7b). Similarly, SD is quite stable at ~22 m for the majority 

of the transect line (typical oligotrophic waters) although decreased SD can be found in the 

coastal region of southern Lake Tahoe (Figs. 6h and 7b). 

It is noted that significantly enhanced Chl-a and nLw(λ) and reduced SD are observed in the 

southern coast of the lake (Fig. 6), as well as in the southern end of the transect line (Fig. 7). In 

fact, VIIRS-derived nLw(λ) spectra in the southern coastal region show effects like typical 

bottom-affected water with significantly enhanced nLw(λ) spectra (Fig. 6). Although VIIRS-

derived nLw(λ) spectra in the region might still be valid with the NIR-SWIR combined 

atmospheric algorithm (Wang and Shi, 2007), the lake bottom reflectance contributions to the 

enhancements of the derived nLw(λ) spectra in the visible bands (especially in the blue bands) 
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can indeed lead to large errors in VIIRS-derived Chl-a and SD data in the southern end of the 

region. Thus, VIIRS-derived Chl-a and SD in the bottom-impacted region may have significant 

errors and should not be considered valid. 

3.4. Characterization of seasonal and interannual variability in water property  

Seasonal variations of nLw(λ) spectra, Chl-a, and SD in Lake Tahoe are shown in Fig. 8. For 

nLw(443) (Fig. 8a, f, k, and p), it reaches its peak value in the summer season (Fig. 8f), and the 

minimum occurs in the winter season (Fig. 8p). The seasonal change of nLw(551) (Fig. 8b, g, l, 

and q) is relatively small (but quite noticeable) with highs in the summer and lows in the winter, 

corresponding well to the seasonal variation in SD (Fig. 8e, j, o, and t) (as expected). Similarly, 

the seasonal variation of nLw(671) in the lake is also very small (Fig. 8c, h, m, and r). Similar to 

the climatology results, spatial variations of Chl-a in the lake for each season are generally small 

(Fig. 8d, i, n, and s). The highest Chl-a value can be found in the winter (Fig. 8s), while the 

lowest Chl-a occurs in the summer (Fig. 8i). The seasonal change of SD is also noticeable with 

the lowest SD in the summer (Fig. 8j) and the highest SD in the winter (Fig. 8t). 

In addition, Fig. 9 shows the interannual variations of nLw(λ) spectra, Chl-a, and SD from 

2012 to 2018. VIIRS-derived nLw(443) in 2017 (Fig. 9z) decreased remarkably as compared to 

the other years for the entire lake (Fig. 9a, f, k, p, u, and ee). Particularly, in the southern region 

of the lake, nLw(443) dropped to below ~0.5 mW cm–2
 μm–1 sr–1. This indicates that there were 

increased amounts of absorbing components in the water column. It is noted that the statistical 

results in Fig. 9 should be quite reliable although there may be errors in the VIIRS-derived 

nLw(λ) spectra. Although nLw(443) increased in 2018 (Fig. 9ee), the values were still lower than 

those in the period of 2012–2016. Unlike nLw(443) (Fig. 9a, f, k, p, u, z, and ee), the interannual 

variations of nLw(551) (Fig. 9b, g, i, q, v, aa, and ff) and nLw(671) (Fig. 9c, h, m, r, w, bb, and 

gg) were not significant (not noticeable). 

It is noted that VIIRS-derived Chl-a values in 2017 and 2018 may be over-estimated due to 

the Chl-a algorithm issue in dealing with the increased amount of inorganic suspended particles 

from high river runoff in that year. Thus, VIIRS-derived Chl-a values in 2017 and 2018 might be 
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biased, and therefore, are not shown in Fig. 9. Except for the years 2017 and 2018, the spatial 

distributions of Chl-a in the other six years (Fig. 9d, i, n, s, and x) are similar. On the other hand, 

different from the Chl-a interannual variation, SD showed notable decreases in 2016 and 2017 

(Fig. 9y and dd) in comparison to normal (climatology) SD values (Fig. 6h) and to those in the 

other years (Fig. 9e, j, o, t, and ii). 

In addition, the seasonal and interannual variation in nLw(λ) spectra for the entire Lake 

Tahoe are quantitatively evaluated (Fig. 10). Fig. 10a shows the clear seasonal change in nLw(λ) 

spectra. Specifically, nLw(410), nLw(443), and nLw(486) values are the highest in the summer and 

the lowest in the winter. In the spring season, nLw(λ) spectrum is similar to the climatology (Fig. 

10a). The seasonal differences in nLw(551) are smaller than those of the shorter wavebands, but 

are still obvious with highs in the summer and lows in the winter, reflecting the SD seasonal 

variation in the lake (Fig. 5b). It is noted again that nLw(638) and nLw(671) are both close to 0 for 

all four seasons. 

The interannual variability of nLw(λ) spectra for Lake Tahoe is also significant (Fig. 10b). In 

particular, the nLw(λ) spectrum in 2017 was abnormal and outlying, showing significantly low 

values for nLw(410), nLw(443), and nLw(486). For example, nLw(410) in 2017 was ~0.5 mW cm–2
 

μm–1 sr–1, compared to the normal value of ~0.8 mW cm–2
 μm–1 sr–1 in the other years. In 2018, 

the depression of nLw(410) was alleviated, but still lower than those in the other normal years. 

Fig. 10b shows that nLw(λ) spectra in 2012, 2014, 2015, and 2016 were all similar although some 

slight interannual variations did exist. All of these seasonal and interannual variations in VIIRS-

derived nLw(λ) spectra are consistent with nLw(λ) spectral images as shown in Figs. 8 and 9. 

3.5. The 2017–2018 anomaly event in Lake Tahoe 
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The interannual variability of water properties in Lake Tahoe in Figs. 9 and 10 shows that 449 

anomalous nLw(λ) spectra and SD occurred in 2017, and this abnormal event extended to 2018. 

Specifically, the median values of SD for the entire Lake Tahoe in each month between 2012 and 

2018 were calculated to characterize and quantify the long-term temporal variations and the 

environmental anomaly in 2017.  
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The SD variation in Lake Tahoe between 2012 and 2018 is shown in Fig. 11a. The seasonal 

variation of SD was more pronounced in comparison to the interannual SD variation with SD 

ranging between 18–19 m and 23–24 m. The lowest SD values were in the summers of 2013, 

2016, and 2017. After removing the seasonal SD variation, Fig. 11b shows that SD anomaly 

dropped below −2 m in the spring of 2017, and kept negative SD anomaly values for the entire 

2017 year, consistent with the local media report (Staff-Report, 2018). In comparison, the 

negative SD anomaly values in 2013 and 2016 were mild and lasted only a couple of months. 

The temporal variation of the SD anomaly in Fig. 11b clearly shows that 2017 is the year with 

the least water clarity in the studying period between 2012 and 2018. 

Fig. 12 provides the quantitative spatial image details of the temporal evolvements of nLw(λ) 

spectra and SD in the period from early 2017 to spring 2018. In the period between December 

2016 and February 2017, all lake water properties (Fig. 12a–d) were similar to those of 

climatology for the winter season (Fig. 8p, q, r, and t). Starting in the spring of 2017 (March 

2017–May 2017), the decreased nLw(443) (Fig. 12e) was found comparable to the typical 

nLw(443) in the same season (Fig. 8a). In the summer of 2017 (June 2017–August 2017), 

nLw(443) (Fig. 12i) was significantly lower than the same-season climatology nLw(443) (Fig. 8f). 

In the autumn of 2017, nLw(443) reached the lowest (Fig. 12m). It is also noted that SD in this 

season (Fig. 12p) was also lower than the SD climatology in the autumn (Fig. 8o). 

Starting in the 2017–2018 winter season, nLw(λ) and SD went back to normal (Fig. 12q–t) 

although anomalous nLw(443) and SD were still remarkable in comparison to their typical values 

(Fig. 8p, q, r, and t). In the spring of 2018 (March 2018–May 2018), VIIRS-SNPP-measured 

nLw(λ) and SD (Fig. 12u–x) in the lake were fully recovered from the abnormal environmental 

event in 2017. Indeed, the lake’s nLw(λ) and SD images in this period were similar to their 

typical ones (Fig. 8a, b, c, and e). 
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The water property anomaly in 2017 was observed also by the in situ water quality 478 

monitoring system and reported elsewhere (TERC, 2018). The annual average of SD (18.2 m) 479 

(TERC, 2018) was the lowest value ever recorded sincem Lake Tahoe long-term monitoring 480 



 

 

started in 1968, while the average SD in 2014, 2015, and 2016 in the lake were 23.7, 22.3, and 

21.1 m, respectively. This anomalous environmental variation was attributed to the extreme 

weather and hydrologic events, all related to climatic change in the region. The total precipitation 

in the region was 175 cm in 2017 in comparison to amounts below 50 cm in 2014 and 2015. This 

high precipitation event led to high inflow carrying unusually high amount of sediments from 

surrounding tributaries. As a result, the concentrations of inorganic particles in the lake were 

elevated throughout the year, causing observed low water clarity, which is consistent with 

VIIRS-SNPP measurements. 

The in situ Chl-a measurements did not show anomalous values in 2017, although the in situ 

Chl-a data exhibited relatively higher values in the winter. However, anomalous high Chl-a 

values were derived from VIIRS-SNPP measurements in 2017, which were associated with low 

nLw(λ) in the shorter wavebands (410, 443, and 486 nm) (Figs. 9z and 10b) and may be heavily 

affected by absorption of high concentrations of inorganic sediments brought by high inflow as 

discussed above. This discrepancy (likely due to the satellite Chl-a algorithm issue), despite the 

reasonably good agreement of satellite-derived and in situ measurements in normal years, 

suggested the importance of improving the understanding of detailed properties of optically 

significant components in the water column and optical process of the lake for future 

biogeochemical monitoring with higher accuracy.  

4. Discussions and Conclusion      

In the last three decades, satellite ocean color remote sensing (e.g., SeaWiFS, MODIS, 

VIIRS, etc.) has been widely used in user communities for scientific researches and applications 

(McClain, 2009) to understand global and regional water optical, biological, and biogeochemical 

properties, and to evaluate their impact on climatic change, natural hazards, and various other 

environmental variations. In fact, satellite ocean color data have been playing a critical role to 

monitor and understand water quality over the global open ocean, coastal, and inland waters 

(IOCCG, 2008, 2018).  
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The TOA Rayleigh scattering radiance computations, however, exhibited a significant error 

in satellite-measured global high-altitude water property data due to an issue in atmospheric 

correction to accurately account for the effects of the high-altitude water surface property (i.e., 

surface atmospheric pressure). The error resulted in considerably biased low nLw(λ) spectra 

which are often unusable for water property monitoring. Indeed, there are few satellite water 

color remote sensing studies over high-altitude lakes. It was shown that, with new improved 

Rayleigh radiance computations (Wang, 2016), satellite remote sensing can now routinely 

produce accurate and reliable water optical properties over high-altitude Lake Tahoe, similar to 

the well-established remote sensing capability over global sea-level inland bodies of water. The 

present results demonstrated that the new computation method can derive accurate nLw(λ) spectra 

from high-altitude inland waters. It also showed that Chl-a and SD values estimated from nLw(λ) 

spectra were reasonable. Therefore, satellite-measured nLw(λ) spectra, Chl-a, SD, and potentially 

other related products can be effectively used to characterize spatial and temporal variations of 

the lake water properties. This is indeed an important development for future satellite-based 

water quality monitoring of global inland waters. 

Based on the in situ SD measurements, we developed a regional SD retrieval algorithm from 

VIIRS observations for Lake Tahoe. Chl-a and SD from VIIRS observations were generally 

consistent with the in situ measurements even though the algorithms are not perfect and some 

discrepancies indeed exist. It is also noted that nLw(671) is higher in the center of the lake as in 

Figs. 6, 8, and 9, while SD in the central lake is similar to SD in the coastal region. Although the 

differences are minor, e.g., nLw(671) values of 0.031, 0.036, and 0.031 mW cm–2 μm–1 sr–1 
 for the 

transection line points of 5, 15, and 25 km in Fig. 7, respectively, it suggests that other water IOP 

components such as colored dissolved organic matter (CDOM), particularly suspended inorganic 

and organic particles may also contribute to the water property in the coastal region (reflected 

particularly in the SD measurements). 

VIIRS-SNPP observations over Lake Tahoe between 2012 and 2018 are used to quantify 

water optical (nLw(λ) spectra), biological (Chl-a) and water quality (SD) properties in the lake. 
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Climatology nLw(λ), Chl-a, and SD show that the spatial variation of the lake is quite small with 

Chl-a usually around ~0.25 mg m–3 and enhanced nLw(λ) at the blue bands. The present results 

also showed that there was seasonal variability in the measured variables. The highest Chl-a and 

SD normally occur in the winter season and the lowest values in the summer season. Significant 

seasonal nLw(λ) variations can also be found at the VIIRS spectral bands of 410, 443, and 486 

nm. In the summer, VIIRS-derived nLw(λ) at these three bands are generally above ~0.8 mW cm–

2
 μm–1 sr–1, while they are normally below ~0.5 mW cm–2

 μm–1 sr–1 in the winter. The seasonal 

variation for VIIRS-derived nLw(551) is also obvious with highs in the summer and lows in the 

winter. 

In addition, there is significant interannual variability of water properties in Lake Tahoe 

observed from VIIRS measurements from 2012–2018. In particular, 2017 was an abnormal year 

with reduced SD and nLw(λ) at the blue bands. The anomaly started in the spring of 2017, 

reached the minimum for SD and nLw(443) in the 2017 summer-autumn season. During the 

2017–2018 winter, SD started recovering, and went back to the normal in the spring of 2018. 

Anomalously low VIIRS-measured SD values were consistent with in situ measurements. 

Following the anomalous climate condition in the region during the 2017–2018 period, the 

increased suspended particles would probably be the cause of the low nLw(λ) in the blue end of 

the spectrum (Fig. 10b), which ultimately led to the overestimation of Chl-a in the season. This 

result suggests that a better understanding of optical processes of the lake with detailed 

information about optically active components in the water column is desired to account for such 

extreme conditions as well as future changes in environmental conditions. Still, the general trend 

of water clarity and Chl-a in a normal year were well estimated by VIIRS-SNPP observations 

with the current method. 

The anomalous water properties observed from VIIRS-SNPP between 2017–2018 can be 

attributed to the interannual climate variability in the region. As an element of the tributary 

watershed drainage within the Truckee River Basin system, the Tahoe watershed covers more 

than 1000 km2. Thus, the ecosystem can be significantly impacted by the precipitation variation 
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in the region. In early 2017, the western U.S. including California and Nevada experienced a 

heavy precipitation period during the winter season following a multiyear drought period which 

impacted the region significantly (https://www.ncdc.noaa.gov/sotc/national/201713). Indeed, the 

total precipitation in the region was 175 cm in 2017 in comparison to below 50 cm in 2014 and 

561 
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564 

2015 (TERC, 2018). The anomalous precipitation amount and river runoff could transport more 

inorganic and organic suspended matters, CDOM, and nutrients to the lake, leading to the 

depressed SD in the 2017–2018 period. 

The present research is the first study to derive, validate, and apply satellite-measured 

nLw(λ) spectra from high-altitude lakes using new Rayleigh radiance computations, and results 

shown here have important environmental and societal implications. The study demonstrates that 

satellite ocean color remote sensing can provide long-term monitoring with high frequency 

observations not only for the global ocean, coastal and sea-level inland waters, but also for 

global high-altitude inland waters. For example, lakes in the Tibetan Plateau, which can be 

considerably affected by the glacier melting due to global climate change, are rarely investigated, 

because they are remotely scattered around in a vast area, and usually have an inclement 

environment and weather conditions. Satellite remote sensing as demonstrated in this study can 

provide an effective and efficient tool to evaluate the long-term environmental variability of 

these systems in response to climate change.   

Finally, it has been clearly shown that Lake Tahoe is generally a clear oligotrophic water 

body with high spatial uniformity over almost the entire lake. These characteristics make it ideal 

to be used as evaluation, validation, and a monitoring site for satellite ocean color remote 

sensing. In fact, Lake Tahoe has been used for calibration and validation of thermal bands for 
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various satellite sensors (Barsi et al., 2007; Hook et al., 2007; Steissberg et al., 2005; Tonooka 583 

and Palluconi, 2005; Tonooka et al., 2005). Advantages of Lake Tahoe as an additional 

calibration and validation site for satellite ocean color sensors include (1) logistically easy to 

access for maintaining the site (as the site has already been established and used for calibration 

and validation for thermal bands), (2) located at high-altitude (~2 km) with less atmospheric 
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effects (i.e., less TOA radiance contributions from molecules and aerosols), and (3) weather 

conditions are generally cooperative (e.g., no hurricanes) and instruments at the location are 

more controllable. Therefore, Lake Tahoe can potentially serve as a good calibration and 

validation site for satellite-derived ocean/water property products. 
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Figure Captions 

Figure 1. Map of Lake Tahoe located in California-Nevada of the U.S. The location for the in 

situ nLw(λ) measurements at the TB3 station [39°06'37"N, 120°04'31"W] and in situ Chl-a and 

SD at the MLTP station [39°8'30" N 120°00'55.5"W] are also marked. 

Figure 2. (a) Comparisons of VIIRS-SNPP-derived and in situ-measured nLw(λ) spectra at the 

TB3 station in Lake Tahoe for the measurement dates of (a) June 15, 2013, (b) July 15, 2013, (c) 

August 15, 2013, and (d) September 29, 2013.  

Figure 3 Scatter plot of VIIRS-SNPP-derived nLw(λ) versus in situ-measured nLw(λ) at the 

VIIRS spectral bands of 410, 443, 486, 551, 638, and 671 nm. Values of mean ratio (Mean Ratio, 

unitless) and mean absolute difference (Mean Abs Diff, unit of mW cm–2
 μm–1 sr–1) between 

VIIRS-derived and in situ-measured nLw(λ) at the six VIIRS spectral bands are also indicated in 

the plot.  

Figure 4. VIIRS-derived SD compared with those from the in situ measurements at the MLTP 

station in Lake Tahoe. 

Figure 5. VIIRS-derived water quality products compared with those from the in situ 

measurements at the MLTP station between 2012 to 2018 for (a) Chl-a and (b) SD. Note that in 

situ Chl-a data were derived with the mean from measured Chl-a values at the surface and 10 m 

water depth.  

Figure 6. VIIRS-derived climatology (2012–2016) water property data in Lake Tahoe for (a) 

nLw(410), (b) nLw(443), (c) nLw(486), (d) nLw(551), (e) nLw(638), (f) nLw(671), (g) Chl-a, and (h) 

SD. The transection line in panel (a) from the north to south at 120.02°W is marked for further 

data analysis. 

Figure 7. VIIRS-derived climatology (2012–2016) water property data along the transection line 

(noted in Fig. 6a) in Lake Tahoe for products of (a) nLw(443), nLw(551), and nLw(671) and (b) 

Chl-a and SD. 
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Figure 8. VIIRS-derived seasonal maps of water properties (2012–2016) in Lake Tahoe for 

products of (along the row) nLw(443), nLw(551), nLw(671), Chl-a, and SD for the season of (a–e) 

spring (March–May), (f–j) summer (June–August), (k–o) autumn (September–November), and 

(p–t) winter (December–February). 

Figure 9. VIIRS-derived interannual maps of water properties in Lake Tahoe for products of 

(along the row) nLw(443), nLw(551), nLw(671), Chl-a, and SD for the year of (a–e) 2012, (f–j) 

2013, (k–o) 2014, (p–t) 2015, (u–y) 2016, (z–dd) 2017, and (ee–ii) 2018. Note that Chl-a maps in 

2017 and 2018 are not presented due to possible issue with the algorithm-caused overestimation. 

Figure 10. VIIRS-derived nLw(λ) spectra in Lake Tahoe for (a) seasonal mean and climatology 

(2012–2016) and (b) annual mean in 2012–2018. 

Figure 11. VIIRS-derived temporal variation of the water property in Lake Tahoe between 2012 

and 2018 for (a) SD and (b) SD anomaly. The red dotted line in plot (a) is the corresponding 

climatology monthly mean values derived from 2012–2016. 

Figure 12. VIIRS-derived Lake Tahoe water property of nLw(443), nLw(551), nLw(671), and SD 

(along the row) and for the 2017–2018 abnormal event with specific time period of (a–d) 

December 2016–February 2017, (e–h) March 2017–May 2017, (i–l) June 2017–August 2017, 

(m–p) September 2017–November 2017, (q–t) December 2017–February 2018, and (u–x) March 

2018–May 2018.  
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Graphical Abstract 

The Visible Infrared Imaging Radiometer Suite (VIIRS)-measured climatology (2012–2016) 

water property data (the normalized water-leaving radiance spectra nLw(λ), chlorophyll-a 

(Chl-a) concentration, and water Secchi depth (SD)) in a high-altitude Lake Tahoe in US for 

(a) nLw(410), (b) nLw(443), (c) nLw(486), (d) nLw(551), (e) nLw(638), (f) nLw(671), (g) Chl-a, 

and (h) SD. The transection line in panel (a) from the north to south at 120.02°W in the lake 

is marked for further data analysis to show the spatial distribution of the lake water 

properties. 
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